martes, 25 de enero de 2011

QUE ES LA EVOLUCION. LEEN EL ARTICULO Y LUEGO DESARROLLAMOS EL CUESTIONARIO EN LA CLASE CON EL GRUPO MOVER

QUÉ ES EVOLUCIÓN?

Evolución es la rama de la Biología que se refiere a todos los cambios que han originado la diversidad de los seres vivientes en la Tierra, desde sus orígenes hasta el presente.

Actualmente los biólogos estamos convencidos, por las evidencias acumuladas, que todas las formas vivientes, incluyendo al ser humano, surgieron paulatinamente en el curso de la historia de la Tierra, y de que todos los organismos se originaron a partir de formas primitivas simplificadas.

La evolución es una teoría por el contexto de las pruebas científicas confirmadas por la observación del proceso evolutivo en comunidades modernas. Ésto nos permite mantener un alto grado de certeza acerca de la presencia actual de los mecanismos evolutivos que trabajan en la naturaleza, de tal forma que no podemos interpretar erróneamente el Método Científico. Sólo la gente obstinada no ve evidencia en la evolución.

Cuando un enunciado no se ha verificado se denomina "hipótesis", pero si la hipótesis es sometida a pruebas experimentales y se verifica como cierta, entonces alcanza el nivel de "Teoría".

La evolución depende directamente de las leyes genéticas y se considera como un principio de orden en la naturaleza.


EL ORIGEN DE LA VIDA

Basados en la acumulación de información proporcionada por el conocimiento presente en Geología, Astronomía y Genética, los biólogos evolucionistas podemos dibujar una historia sobre el origen de la vida.

Primeramente debemos pensar que la Tierra no presentaba las condiciones que presenta en la actualidad. Hace cerca de 4 mil millones de años, la Tierra tenía una atmósfera llena de gases tóxicos (metano, monóxido de carbono, bióxido de carbono, bióxido de azufre, etc.) y estaba casi desprovista de oxígeno. Tenía una gran cantidad de agua, en su mayor parte en estado gaseoso. El calor atmosférico era intenso y la Tierra era agitada por violentas erupciones volcánicas. Nuestra Luna era cuatro veces mayor que en el presente, los planetas exteriores gigantes y nuestra luna actuaban como pantallas protectoras contra los meteoritos, y el Sol brillaba débilmente.

En 1950, Stanley Miller realizó un experimento en el que él simuló el ambiente de la Tierra primitiva. Miller hizo circular metano y amoniaco dentro de un contenedor de vidrio con agua caliente y con una atmósfera simulada. Entonces agregó una descarga eléctrica. En 24 horas, cerca del 50% del carbono del metano había formado aminoácidos (componentes principales de las proteínas) y otras moléculas orgánicas. Este experimento ha sido repetido por muchos investigadores y los resultados cada vez son más sorprendentes. Se ha encontrado que casi cualquier fuente de energía (electricidad, polvo volcánico caliente, luz, radiación ultravioleta) ha podido convertir las moléculas primitivas en una variedad enorme de compuestos orgánicos complejos.

En 1988, Sidney W. Fox et al, de la Universidad de Miami, realizaron un experimento que simulaba las condiciones primitivas de la Tierra y obtuvieron la síntesis de microesferas de proteínas, con la habilidad de crecer, reproducirse y realizar algunos procesos químicos característicos de las células vivas.

En el agua tibia de los océanos habían compuestos orgánicos disueltos, formando una "sopa nutritiva". Al principio, se sintetizaron muchas moléculas orgánicas complejas, entre ellas las proteínas, los ácidos nucleicos, los lípidos y los carbohidratos. Entonces las moléculas prebióticas originaron coacervados.


Un coacervado es un agregado de moléculas mantenidas unidas por fuerzas electrostáticas. Esas moléculas son sintetizadas abióticamente. A. I. Oparin de Rusia llamó coacervados a los protobiontes. Un protobionte, el cual es un tipo de coacervado, es un glóbulo estable que es propenso a la autosíntesis si se agita una suspensión de proteínas, polisacáridos y ácidos nucléicos. Muchas macromoléculas quedaron incluídas en coacervados.

La vida es una posibilidad energética en todo el Universo.

Los seres vivientes terrestres surgieron miles de millones de años después de la gran explosión (unos 9000 millones de años después).

Los elementos se forman en las nebulosas estelares por efecto de la radiación emitida por las reacciones termonucleares en las estrellas primigenias.

El agua y otros compuestos orgánicos e inorgánicos se forman en la nebulosa solar al ocurrir una oscilación en la densidad de energía que causa transiciones de fase moleculares que permiten la síntesis no-espontánea (endergónica) de compuestos simples orgánicos e inorgánicos.

El agua en las nebulosas estelares permite el enfriamiento de los medios interestelares propiciando la síntesis de compuestos orgánicos más complejos, como carbohidratos, amoníaco, aminoácidos, gliceraldehído, lípidos y tal vez globulinas, en los orificios y grietas de los granos de polvo interplanetario que contienen agua que sufre transiciones súbitas de fase sólida a fase líquida y viceversa.

La luz Ultravioleta, el calor y otras formas de radiación estelar causan la polimerización de compuestos simples para formar moléculas complejas de carbohidratos, proteínas y lípidos, las cuales se integran como glóbulos microscópicos dentro del agua congelada atrapada en los gránulos de polvo (fractales) de las nubes planetarias.

Cuando las nebulosas planetarias se enfrían lo suficiente, ocurre la síntesis de microesferas con membranas externas de lipoproteínas por efecto de la luz UV y del calor generado por las colisiones entre las partículas de polvo interplanetario. Las microesferas contienen una mayor diversidad de compuestos orgánicos debido a que se encuentran sobre substratos aglomerantes que actúan como lechos que facilitan la acumulación e interacción de substancias; por ejemplo, gránulos de Fosfato de Calcio, Carbonato de Calcio, Carburo de Silicio, grafito, fulereno (alótropos del carbono) o Sulfuro de Hierro -los cuales pueden o no contener agua congelada- y por la acción de agentes condensadores o substancias que promueven la síntesis abiótica de biomoléculas simples y complejas. Por ejemplo, el HCN (Cianuro de Hidrógeno) y el C2H2 (Acetileno). Estos compuestos son suficientemente abundantes en los medios interplanetarios en gestación y han sido probados artificialmente como agentes condensadores. Los ensayos indican que la biopolimerización de las proteínas y de azúcares complejos es facilitada por estos agentes y por reacciones promovidas principalmente por bosones de alta energía.

Volviendo a las microesferas, éstas continúan siendo retenidas dentro de las partículas de polvo (fractales) suspendidas en las atmósferas planetarias. Los granos de polvo actúan como escudos protectores de las biomoléculas en contra de la radiación estelar ionizante, de tal forma que las transiciones de fase permiten la síntesis de moléculas aún más complejas de glucoproteínas, ceras, fosfolípidos, polisacáridos y proteínas. Estas moléculas construyen membranas altamente estables y duraderas que contienen a un número mayor de microesferas con diversos productos biológicos; sin embargo, las membranas simples siguen siendo efímeras por la intensidad de la radiación estelar recibida por los planetas que las destruye. Sin embargo, muchas microesferas envueltas por membranas o por estructuras parecidas a membranas subsisten en ese ambiente hostil gracias a que permanecen dentro de los granos de polvo con agua congelada.

Debido a su baja resistencia a la radiación cósmica, no es factible la síntesis de nucleótidos en el espacio interplanetario. Es más probable que los nucleótidos se hayan sintetizado en los planetas, mucho tiempo después de la aparición de las primeras formas vivientes. Además, la síntesis de moléculas de ácidos nucleicos no ocurre directamente en la naturaleza. Por esta razón, los protobiontes que se forman en los medios planetarios no pueden contener ninguna forma de ácidos nucleicos (ADN o ARN).

La Fuerza de Gravedad de los planetas mantiene en órbita pequeños cúmulos de granos de polvo estelar con microesferas envueltas por membranas amfifílicas, formando nubes densas de polvo, vapor de agua, amoníaco, acetileno, cianuro de hidrógeno, metano, bióxido de carbono y otros gases; sin embargo, la aceleración de los granos de polvo y el intenso calor emitido por los mismos planetas imposibilitan el depósito de polvo sobre las superficies de los planetas. En fases posteriores de la formación de los planetas, el vapor de agua se condensa en las atmósferas planetarias formando gotas pesadas que se precipitan a los suelos planetarios arrastrando con ellas a los granos de polvo con y sin microesferas.

Aún suspendidos en las atmósferas planetarias, las microesferas se aglutinan dentro de los granos de polvo con agua para formar estructuras prebióticas con membranas amfifílicas más complejas -llamadas protobiontes- que aún no son formas vivientes, pero que ya experimentan transferencias de energía semejantes a las de las formas vivientes (biontes).

Cuando los planetas se enfrían lo suficiente y ocurren precipitaciones pluviales, los fractales con y sin protobiontes son arrastrados por las gotas de agua hasta las superficies de los planetas.

Una vez depositados en suelos planetarios, sobre capas de suelo húmedo o en el fondo de charcas poco profundas, los protobiontes pueden mantenerse estables al encontrarse protegidos de la radiación estelar intensa por densas nubes de polvo suspendido y de vapor de agua en las atmósferas planetarias.

Miles de millones de protobiontes pueden ser destruidos por las condiciones agresivas de los ambientes planetarios; no obstante, cuando los planetas se enfrían más y las estrellas son menos inestables, las estructuras básicas de los protobiontes pueden permanecer estables durante períodos de tiempo cada vez más prolongados. La diferencia consiste en estar en microambientes con los factores necesarios que les permitan resistir y prevalecer ante la presión de los ambientes planetarios iniciales.

La evolución química subsiguiente consiste en la unión de los protobiontes, unos con otros, por afinidad electroquímica. Los protobiontes se unen unos a otros formando vesículas con membrana continua. Esas vesículas complejas reposan en los suelos húmedos o en el fondo de charcas poco profundas. Las fisuras y huecos del suelo llenos de substancias químicas quedan bajo las biomembranas formando microambientes semejantes al citosol de las células modernas. Ello impide la catástrofe osmótica que ocurriría si la hipótesis del "caldo nutritivo" de Oparin fuese real. La observación paleontológica y geológica indica claramente que los "caldos nutritivos" hipertónicos no pueden existir y no han existido en la naturaleza.

Una vez fusionados, algunos protobiontes se convierten en Arqueobiontes al poseer configuraciones moleculares aptas que pueden experimentar la fase biótica gracias a sucesivos cambios químicos estructurales en las biomembranas que les permita incorporar polipéptidos y glucopéptidos que promueven cambios en los campos magnéticos que causan la formación de gradientes electroquímicos y que conducen al establecimiento del campo electrodinámico que permite la biotransferencia de energía a través de partículas con alta densidad de energía. De esta manera se sintetizan los biontes o seres vivientes. Los biosistemas primitivos son los antepasados de cualquier forma viviente que exista en cualquier parte del Cosmos.

De acuerdo con mi hipótesis, solo se requiere de un bionte viable y autoreplicable para generar al resto de los seres vivientes. Su reproducción sería semejante a la gemación, pero en total ausencia de ácidos nucleicos. Las moléculas de proteínas autocatalíticas contienen la información necesaria para autoreplicarse.

Volvamos a la abiogénesis cósmica. Las biomembranas extendidas sobre los fondos de las charcas, cubriendo huecos y grietas del suelo rellenos con sustancias químicas orgánicas, realizan intercambios activos de fermiones y compuestos químicos con el medio circundante.

La incorporación al citosol de moléculas de proteínas, carbohidratos, y otras moléculas complejas facilita la formación de estructuras moleculares complejas especializadas en la transferencia de energía desde el medio circundante; por ejemplo, moléculas de ATP Sintetasa, nucleótidos de ARN, moléculas cortas de ARN, NADP, ADP, etc. Las pequeñas cadenas de ARN son sintetizadas por las mismas proteínas autocatalíticas con afinidad bioquímica por los nucleótidos haciendo las veces de topoisomerasas que transfieren la información de sus secuencias de aminoácidos hacia las moléculas de ARN codificador.

De esta manera, los biontes se mantienen estables por mucho más tiempo, además de que pueden transferir la información de sus características individuales a través de las cadenas de ARN hacia las vesículas nuevas generadas por crecimiento de su propio citosol. Protegidos por un cielo oscurecido por polvo suspendido y por vapores diversos, en depósitos de agua poco profundos y a no más de 36° C, los biontes se replican mediante la formación de vesículas que se separan de la membrana principal a modo de burbujas o brotes que poseen las mismas características estructurales y funcionales del bionte primitivo.

Las proteínas autocatalíticas obligatoriamente, por sus características fisicoquímicas, dirigen la síntesis de moléculas cortas de ARN para formar cadenas cada vez más largas que contienen toda la información para la propia síntesis de esas proteínas y de moléculas idénticas de ARN. Más tarde, las mismas proteínas autocatalíticas producen nucleótidos de ADN y después de cadenas completas de ADN.

La flexibilidad de esta hipótesis nos permite asumir que las ribozimas no son necesarias para la síntesis de biomoléculas autoreplicables, las cuales pueden multiplicarse a través de la transformación de la cuarta configuración de otras proteínas en el mismo citosol. Por ejemplo, la replicación de los priones, los cuales pensamos que poseen configuraciones moleculares muy parecidas a las proteínas autocatalíticas primigenias.

La Tierra no es el único planeta del sistema solar con las condiciones propicias para la supervivencia de los biontes; aunque éstos pudieron formarse en otros planetas del sistema estelar local sin tener posibilidades de supervivencia debido a las condiciones inapropiadas de los ambientes planetarios o a transiciones planetarias súbitas y extremas. Por ejemplo, en Marte pudieron formarse seres vivientes por la misma época que en la Tierra, sin embargo, un cambio climatológico súbito y severo en el planeta, ocurrido unos 400 millones de años después de su consolidación, destruyó todas las formas vivientes en ese planeta (Shuster y Weiss. Science. 2006)



ESTRATEGIAS EVOLUTIVAS

LA EVOLUCIÓN DE LOS SERES VIVOS OCURRE POR LA CONFLUENCIA DE TRES COMPONENTES INTERDEPENDENTES DETERMINANTES:


SELECCIÓN NATURAL- es el conjunto de modificaciones en el ambiente de los organismos (puede ser ejercido a un nivel de individuo o a nivel comunitario), graduales o repentinas, las cuales provocan una tensión particular capaz de aniquilar a los individuos o a las especies menos adaptables, y hacer para prevalecer a los mejor adaptables. Un buen ejemplo de Selección Natural es la pericia para realizar movimientos natatorios. Históricamente, los genes que determinan esta característica estaban en la pila genética de la población antes de que se presentara la ocasión de utilizarla. Algunos miembros de la población poseían los genes, mientras que otros carecían de ellos. Cuando ocurrió una inundación, los que poseían los genes ventajosos sobrevivieron; por otro lado, los que eran incapaces de ejecutar los movimientos natatorios perecieron, porque ellos carecían de los genes que determinan dicha habilidad.


NEUTRALIDAD- este concepto se refiere a la presencia de genes que determinan características fenotípicas nuevas, las cuales se acumulan en el caudal genético de la población, sin actuar favoreciendo a los genes en la supervivencia del individuo, ni contribuyendo para su exterminio. Una ilustración perceptible es la presencia de pezones en mamíferos macho, cuya funcionalidad es obsoleta porque los machos no amamantan a sus crías. Sin embargo, el gene que determina el desarrollo de los pezones continúa expresándose y transmitiéndose a la descendencia.


ESTRUCTURACIÓN- aún cuando no se produzca una presión selectiva sobre los individuos, ocurren en ellos algunos cambios estructurales que propician una ventaja funcional sobre aquellos individuos que carecen de esas modificaciones. De esta manera, los cambios estructurales que conducen a una variación en la función, transfiere al individuo hacia otra línea evolutiva, incrementando también su habilidad para ocupar otros nichos ecológicos, o para ser movidos entre varios nichos de acuerdo con sus requisitos para sobrevivir. Un ejemplo de Estructuración es la posición erecta y locomoción bípeda de los seres humanos. Los humanos no se enderezaron por necesidad, pues el cambio estructural ocurrió como un acontecimiento al azar, y no en función de un acontecimiento selectivo en el entorno. Cuando se modificó la postura de los humanos, los individuos se encontraron ante la disyuntiva de abandonar su nicho ecológico previo o de permanecer en él sometidos a una desventaja peligrosa para la supervivencia de la especie; la nueva postura los calificó para habitar en áreas más abiertas y menos limitadas en recursos. No impidió que los individuos pudieran seguir habitando en su nichos ecológicos previos, así se amplió el mundo del Homo sapiens.

Algunas partes del Genoma son más capaces de tomar la sucesión de nucleótidos, y la manera de llevarse a cabo reside en la recombinación del material genético, basado sobre la historia de éxito de los antepasados. Así, las biomoléculas tienen la capacidad de "ver" y "escoger" los cambios más apropiados para producir una función nueva, o la menos viable que podría suspender algo esencial. Los genomas codifican esta estrategia, y los organismos han intercambiado información genética por la transferencia horizontal de genes. Sucedió en el pasado, sucede ahora, y estará sucediendo en el futuro. La Biodiversidad es una fuente de información genética, y los intercambios de información ocurren entre organismos variados, así que ésta llega a ser una buena razón para comenzar con la prioridad en la conservación de la Biodiversidad.

Hay un factor determinante que favorece y dirige los cambios evolutivos: la Selección Natural. La selección natural es el conjunto de presiones externas e internas que provocan una tensión dentro de una comunidad específica afectando a cada individuo. Los óptimos genes propicios sobrevivirán a esas presiones, y los menos adecuados desaparecerán. Pero ésto no siempre es así, pues en muchas ocasiones los genes para la conducta de cooperación en grupo favorecen la supervivencia de los "débiles". Si un individuo posee una combinación propicia de alelos, entonces esos alelos serán transmitidos a su progenie, de tal manera que los alelos favorables aparecerán en una proporción mayor en las generaciones siguientes.


Ejemplo:

Una población de 200 000 hormigas caminaban a través de un bosque, devorando todo lo que encontraban a su paso. Su correr los llevó a tener que cruzar una corriente de agua (presión del entorno). Muchas de ellas se aventuraron a cruzar la corriente para ser arrastradas y ahogadas por el agua. Éstas hormigas carecían de alelos para determinar la conducta de cooperación en grupo. Pero muchas de ellos unieron sus cuerpos para formar un puente sobre el cual las hormigas restantes cruzaron la corriente sin dificultad. Positivamente, estas hormigas poseían alelos que determinaron su conducta en grupo y sobrevivieron (Supervivencia del mejor adaptado).

Muchas hormigas masculinas fértiles poseían esos alelos y sobrevivieron (conservación de la variación genética en las poblaciones), así que los alelos favorables fueron añadidos al Depósito Genético de la comunidad. Cada vez más genes favorables serán agregados, porque aquéllas que poseían genes desfavorables perecerían a causa de su incompetencia.

Este hecho nos conduce a pensar acerca de una tendencia hacia la distribución uniforme. Sin embargo, los alelos no favorables persistieron todavía en la comunidad porque muchas hormigas con el defecto fueron capaces de cruzar el agua encima del puente viviente, además, esos alelos persistieron también en el genoma de las mejores hormigas adaptadas, pero sin expresión debido a mecanismos moleculares específicos de stopgap. Además, si las hormigas sobrevivientes poseían una característica nueva en su aspecto (Fenotipo) físico, entonces su constitución anatómica también cambiaría y constituiría un cambio macroscópico.


Hormigas Argentinas

Ya que hablo de hormigas, recientemente ha sido descubierto que una cierta especie de hormigas argentinas (Iridomyrmex humilis) han estado invadiendo el territorio de Estados Unidos de América. En este caso, lo que nos interesa es que ellas han evolucionado según las diferencias en las condiciones del entorno. En su lugar de origen ellas muestran una conducta intraespecífica agresiva. Ellas se atacan unas a otras, de tal manera que ellas no pueden establecerse en colonias grandes y no pueden estar prosperando permanentemente como colonia en un determinado lugar.

Por otro lado, esta característica del comportamiento ha sido reemplazada en Estados Unidos de América por una conducta de la cooperación en grupo. Ellas construyen colonias grandes y se han adaptado perfectamente al ambiente, de tal manera que muchas especies nativas de Estados Unidos de América han sido desplazadas de sus hábitats naturales por las hormigas invasoras. El cambio se determinó por modificaciones en la expresión de un gene.


Muchos cambios evolutivos ocurren visiblemente en un tiempo muy corto, como el polimorfismo en comunidades de los pinzones de la Islas Galápagos con modificaciones en sus picos, los cuales fueron provocados por la dureza de las semillas que ellos rompían (Presión Selectiva). Los pinzones que tenían el pico más fuerte sobrevivieron (Supervivencia del mejor adaptado). Como éstos tenían un pico más ancho que los otros de la misma variedad, entonces una característica anatómica (Fenotipo) nueva - determinada por alelos (Genotipo) - fue hecha visible en menos de 30 años.

Pero no siempre ocurre de esta manera: Ecólogos Evolutivos han mostrado que las hembras de una especie de patos son estimuladas por el atractivo de los machos para determinar la fuerza de su progenitura por medio de una adición mayor de testosterona a sus huevos.




CAUSAS DE EVOLUCIÓN EN LOS SERES VIVIENTES

Hasta ahora, los científicos hemos identificado las siguientes estrategias evolutivas moleculares:

1. Cambios simultáneos múltiples en un solo genoma.

2. Transferencia Horizontal. Implica mecanismos que adaptan a un ADN funcional preexistente para nuevos propósitos.

3. Cuando los límites entre Intrones/Exones concurren en sitios en los cuales la variación en las estructuras de las proteínas pueden acomodarse.

4. Duplicación de genes. Permite que un genoma explore la variación en un contexto funcional sin perder la funcionalidad de la copia original.

5. Módulos de Translocación y transposición de secuencias de ADN, en vez de mutaciones puntuales.

6. Transposones, o ADN invasivo, por ejemplo, los plásmidos bacterianos.

En suma, la evolución no se debe tan solo a las mutaciones puntuales. Podría decirse que las mutaciones al azar y puntuales son poco incidentes en la evolución.

No todos los cambios son evolución. Evolución es un proceso que implica variación, reproducción, herencia y selección.

Variación se refiere a cambios en el genotipo individual que podría o no expresarse en el fenotipo de ese individuo. La evolución no es posible sin variación.

Reproducción es una función de los sistemas vivientes que permite la producción de entidades nuevas que podrían o no compartir los cambios genotípicos de sus antepasados. Evidentemente, la evolución es imposible sin reproducción.

Herencia es la aptitud de transferir la información genética de entidades preexistentes a sus descendientes. La evolución biológica es irrealizable sin herencia.

Selección es el sistema de variaciones en el medio externo o interno que proporciona situaciones de tensión para los individuos, las poblaciones, las comunidades, la biota, etc. La evolución puede ocurrir sin selección a través de radiación estocástica.



EVOLUCIÓN DEL HOMBRE (Resumen)

La existencia del ser humano tiene unos 6 millones de años, desde que era un Australopithecus, más simiesco que humano, pero que ya mostraba algunas características humanas, por ejemplo el bipedalismo y cierta conducta social.

Su vida era más que agitada. Los peligros le asaltaban a cada momento, pues aún no desarrollaba las habilidades que poseemos en la actualidad; sin embargo, ya empleaba herramientas sencillas y formaba grupos de defensa, sobre todo contra depredadores y contra las inclemencias de la naturaleza. Medían más o menos 1.5 m y pesaban cuando mucho 47 Kg. (qué envidia).

Más tarde, se desarrollaron los primeros homínidos, con un cerebro de mayor tamaño que el de los simios más grandes de la época y con la habilidad para fabricar herramientas. Entre los más notables encontramos al hombre de Neanderthal, al hombre de Cro-Magnon y al hombre actual. Todos ellos del género Homo (por ejemplo, Homo habilis, H. rudolfensis, H. neanderthalensis, H. ergaster, etc.).

Los seres humanos actuales descendemos del H. ergaster, del cual evolucionó el H. erectus, luego el H. heidelbergensis, y, finalmente, el H. sapiens sapiens. Después de nosotros no sabemos, pero lo podemos predecir de acuerdo a las tendencias evolutivas presentes.


CIENCIA Y RAZÓN

A pesar de las evidencias, muchas personas (aún algunos científicos) creen que la evolución es tan sólo una hipótesis, e incluso algunas personas piensan que es una opinión autoritaria (dogma) de los biólogos. Ésto ha hecho que se hayan formado grupos que se oponen a la enseñanza de la evolución en las escuelas e incluso ha propiciado la invención de algunas pseudo-ciencias como el Creacionismo, la Ciencia de la Creación, y la Creación Evolutiva, que se han establecido sin tener alguna base experimental, sino sólo en declaraciones filosóficas (sofismas). Ambas, la Astronomía y la Biología (especialmente la Evolución) son las ciencias que han roto el taburete de los dogmas religiosos, y ésta es la razón por la cual estas dos especialidades han sido elegidas para sus feroces agresiones.

Sin embargo, la razón debe prevalecer. Nosotros no podemos forzar a la ciencia para que concuerde con nuestras creencias personales. Los hechos son llanamente los hechos, y lo no verdadero es simplemente lo no verdadero. Mientras los científicos se dedican al estudio de los mecanismos complejos de la evolución, esas personas no se vierten en verificar si su "evolución creadora" existe, demostrándolo con hechos científicos. Y así ocurre simplemente porque esa "evolución creadora" no existe, y ellos lo saben.

La ambigüedad de la frase "Ciencia de la Creación" es evidente, ya que existe una gran contradicción entre las dos palabras que la forman. ¿Podrían verificar ellos el momento de la creación? ¿Hay una sola prueba acerca de un proceso especial de la creación? Si ellos no son capaces de verificarle es porque una creación especial dirigida no existe. ¿Podría explicar el creacionismo la existencia de los dinosaurios, los trilobites, las extinciones masivas, las deformidades congénitas, las mutaciones, la patogénesis, los parásitos, los virus, los animales y plantas venenosos, los depredadores de hombres silvestres, etc., sin los principios científicos de la evolución?

Si tuviéramos un corazón obtuso, entonces podríamos insistir en que todo fue creado por las hadas y los dioses griegos y romanos, creencias que, para el caso, nos conducirían a las mismas estructuras de pensamiento impuestas por la "Ciencia de la Creación".

QUERIDOS ESTUDIANTES DE GRADO 11 BIENVENIDOS AL MUNDO DE LA QUIMICA DEL CARBONO. HOY INICIAMOS CON LOS ALCANOS LEE CON ATENCION EL SIGUIENTE DOCUMENTO Y REALIZA LOS EJERCICIOS HABLAMOS EL VIERNES SUERTE

¿Qué son?
Son compuestos de C e H (de ahí el nombre de hidrocarburos) de cadena abierta que están unidos entre sí por enlaces sencillos (C-C y C-H).
Su fórmula empírica es CnH2n+2, siendo n el nº de carbonos.

¿Cómo se nombran?
Los cuatro primeros tienen un nombre sistemático que consiste en los prefijos met-, et-, prop-, y but- seguidos del sufijo "-ano". Los demás se nombran mediante los prefijos griegos que indican el número de átomos de carbono y la terminación "-ano".
Fórmula Nombre Radical Nombre
Metano Metil-(o)
Etano Etil-(o)
Propano Propil-(o)
Butano Butil-(o)
Pentano Pentil-(o)
Hexano Hexil-(o)
Heptano Heptil-(o)
Octano Octil-(o)
Otros nombres de la serie de los alcanos son los siguientes:
Nº de C Nombre Nº de C Nombre
9 nonano 30 triacontano
10 decano 31 hentriacontano
11 undecano 32 dotriacontano
12 dodecano 40 tetracontano
13 tridecano 41 hentetracontano
14 tetradecano 50 pentacontano
15 pentadecano 60 hexacontano
16 hexadecano 70 heptacontano
17 heptadecano 80 octacontano
18 octadecano 90 nonacontano
19 nonadecano 100 hectano
20 icosano 200 dihectano
21 henicosano 300 trihectano
22 docosano 579 nonaheptacontapentahectano
Se llama radical alquilo a las agrupaciones de átomos procedentes de la eliminación de un átomo de H en un alcano, por lo que contiene un electrón de valencia disponible para formar un enlace covalente. Se nombran cambiando la terminación -ano por -ilo, o -il cuando forme parte de un hidrocarburo.
Cuando aparecen ramificaciones (cadenas laterales) hay que seguir una serie de normas para su correcta nomenclatura.
Se elige la cadena más larga. Si hay dos o más cadenas con igual número de carbonos se escoge la que tenga mayor número de ramificaciones.

3-metil-hexano
Se numeran los átomos de carbono de la cadena principal comenzando por el extremo que tenga más cerca alguna ramificación, buscando que la posible serie de números "localizadores" sea siempre la menor posible.

2,2,4-trimetil-pentano, y no 2,4,4-trimetil-pentano
Las cadenas laterales se nombran antes que la cadena principal, precedidas de su correspondiente número localizador y con la terminación "-il" para indicar que son radicales.
Si un mismo átomo de carbono tiene dos radicales se pone el número localizador delante de cada radical y se ordenan por orden alfabético.

4-etil-2-metil-5-propil-octano
Si un mismo radical se repite en varios carbonos, se separan los números localizadores de cada radical por comas y se antepone al radical el prefijo "di-", "tri-", "tetra-", etc.

2,3-dimetil-butano
Si hay dos o más radicales diferentes en distintos carbonos, se nombran por orden alfabético anteponiendo su número localizador a cada radical. en el orden alfabético no se tienen en cuenta los prefijos: di-, tri-, tetra- etc. así como sec-, terc-, y otros como cis-, trans-, o-, m-, y p-; pero cuidado si se tiene en cuenta iso-.

5-isopropil-3-metil-octano
Si las cadenas laterales son complejas, se nombran de forma independiente y se colocan, encerradas dentro de un paréntesis como los demás radicales por orden alfabético. En estos casos se ordenan por la primera letra del radical. Por ejemplo, en el (1,2-dimetilpropil) si tendremos en cuenta la "d" para el orden alfabético, por ser un radical complejo. En las cadenas laterales el localizador que lleva el número 1 es el carbono que está unido a la cadena principal.

5-(1,2-dimetilpropil)-4-etil-2-metil-nonano
Si los localizadores de las cadenas laterales son los mismos independientemente de por que extremo de la cadena principal contemos, se tendrá en cuenta el orden alfabético de las ramificaciones.

4-etil-5-metil-octano

Si nos dan la fórmula


Busca la cadena más larga, en este caso es de 6 carbonos. Numera los carbonos comenzando por el extremo que tenga más cerca una ramificación. Marca los radicales y fíjate a qué carbonos están unidos. Nombra los localizadores seguidos de los nombres de los radicales por orden alfabético. Por último nombra la cadena principal con el prefijo correspondiente y terminada en -ano.

Si nos dan el nombre


Escribe la cadena más larga de carbonos, en este caso 5 carbonos. Sitúa los radicales sobre la cadena con la ayuda de los localizadores. Completa el esqueleto de carbonos con hidrógenos hasta completar los cuatro enlaces de cada carbono.

Ejemplos

3-metil-pentano
4-etil-2,4-dimetil-hexano
3-isopropil-2,5-dimetil-heptano
La nomenclatura de la IUPAC admite los nombres tradicionales de algunos radicales substituidos, lo que facilita la nomenclatura en estos casos:
isopropilo (isómero do propilo)
(1-metiletilo)
isobutilo
(2-metilpropilo)
secbutilo (butilo secundario)
(1-metilpropilo)
tercbutilo (butilo terciario)
(1,1-dimetiletilo)
isopentilo
(3-metilbutilo)
neopentilo
(2,2-dimetilpropilo)


Haz el ejercicio como si fuera un juego, un pasatiempo. Con lo que estudiaste te debe salir bien, y si no a repasar otro poco. Buena suerte.
Señala el nombre correcto para estos compuestos:
1.
a) propilo
b) butano
c) propano
2.
a) metano
b) etano
c) metilo

3.
a) propano
b) butano
c) pentano
4.
a) etano
b) mengano
c) propano

5.
a) octano
b) hexano
c) heptano
6.
a) decano
b) octano
c) nonano

7. Alcano lineal de 10 carbonos
a) hectano
b) eicosano
c) decano
8.
a) pentágono
b) pentano
c) pentilo

9. Alcano lineal de 11 carbonos
a) undecano
b) nonadecano
c) eicosano
10.
a) bonano
b) heptano
c) hexano

miércoles, 19 de enero de 2011

LEE ATENTAMENTE EL SIGUIENTE DOCUMENTO

QUE HACES POR EL MEDIO AMBIENTE?

Sigue los consejos que te son dados en este mensaje, de este modo podremos todos juntos curar nuestro medio ambiente......
no olvides reenviarlo entre mas personas se concienticen mejor.

Después de la reunión de expertos de la ONU sobre Cambio Climático realizada en Paris Francia el 1 de febrero de 2007, sae determinó que solo quedan 10 años para que entre todos podamos frenar la catástrofe ambiental y climática que se avecina, la responsabilidad NO es solo de políticos y empresarios, así que lo que cada habitante de la Tierra haga en contra de estos fenómenos es clave para salvar el planeta, nuestras vidas y las de nuestras futuras generaciones..

1.  EL AGUA: Consume la justa.
- Evita gastos innecesarios de agua con estos consejos:
- Mejor ducha que baño. Ahorras 7.000 litros al año.
- Mantén la ducha abierta sólo el tiempo indispensable, cerrándola mientras te enjabonas.
- No dejes la llave abierta mientras te lava los dientes o te afeitas.
- No laves los alimentos con la llave abierta, utiliza un recipiente. Al terminar, esta agua se puede aprovechar para regar las plantas.
- No te enjabones bajo el chorro de agua,
- Utiliza la lavadora y el lavavajillas sólo cuando estén completamente llenos.
- No arrojes al inodoro bastoncillos, papeles, colillas, compresas, tampones o preservativos, no es el cubo de la basura.
- Repara inmediatamente las fugas, 10 gotas de agua por minuto suponen 2.000 litros de agua al año desperdiciados.
- Utiliza plantas autóctonas, que requieren menos cuidados y menos agua.
- Reutiliza parte del agua que usa tu lavadora de ropa, esta te podrá servir para los baños, limpiar pisos, hacer aseo o lavar el frente de tu casa.
- No vacíes la cisterna sin necesidad.
- No tires el aceite por los fregaderos. Flota sobre el agua y es muy difícil de eliminar.
- No arrojes ningún tipo basura al mar, ríos o lagos.
- Riega los jardines y calles con agua no potable.
- El mejor momento para regar es la última hora de la tarde ya que evita la evaporación
- El agua de cocer alimentos se puede utilizar para regar las plantas
- El gel, el champú y los detergentes son contaminantes. Hay que usarlos con moderación y de ser posible optar por productos ecológicos.
- No olvides plantar un árbol por lo menos una vez en tu vida.

2. 
BASURAS: Más de la mitad son reciclables ¿Por qué no las RECICLAMOS y AHORRAMOS?
- La ley de las 3 Erres: RECICLAR, REDUCIR el consumo innecesario e irresponsable y REUTILIZAR los bienes.
- Al recuperar cajas de cartón o envases que también son hechos con papel contribuyes a que se talen menos árboles, encargados de capturar metano y de purificar el aire. Al reutilizar 100 kilogramos de papel se salva la vida de al menos 7 árboles.
- Separa los desperdicios que generas. Debes consultar en tu administración local o en tu unidad residencial si disponen de un sistema de selección de desperdicios. Estos se convierten en basura solo al mezclarlos. Casi prácticamente todo tiene rehuso o reciclado.
- Usa siempre papel reciclado y escribe siempre por los dos lados.
Usa RETORNABLES.
- No derroches servilletas, pañuelos, papel higiénico u otra forma de papel.
- Elije siempre que puedas envases de VIDRIO en lugar de Plástico, Tetrapack y Aluminio.
- Recuerda que hay empresas dedicadas a la compra de materiales reciclables como papel periódico, libros viejos, botellas, etc. Informate de donde puedes llevarlo.

3.
 ALIMENTACIÓN: Disminuye el consumo de carnes rojas
-Disminuye el consumo de carnes rojas ya que la cría de vacas contribuye al calentamiento global, a la tala de árboles y la disminución de los ríos. Producir un kilo de carne gasta más agua que 365 duchas.
- Los productos enlatados consumen muchos recursos y energía. No consumas alimentos en lata especialmente atún porque está en vía de extinción.
-Evita consumir alimentos 'transgénicos' (OMG Organismos manipulados genéticamente) ya que su producción contamina los ecosistemas deteriorando el medio ambiente
- No consumas animales exóticos como tortugas, chigüiros, iguanas, etc.
- Consume más frutas, verduras y legumbres que carnes.
- Nunca compres pescados de tamaños pequeños para consumir.
- Si puedes consume alimentos ecológicos (sin pesticidas, sin insecticidas, etc.)

4.
  ENERGÍA: No consumas de más.
- Usa agua caliente solo de ser necesario o solo la necesaria, conecta el calentador solo dos horas al día, gradúalo entre 50 y 60 grados y si puedes intenta bañarte con agua fría es mas saludable.
- Evita usar en exceso la plancha, el calentador de agua o la lavadora, que gastan mucha energía y agotan los recursos para generarla. Esto lleva a que los países se vean en la necesidad de usar petróleo, carbón o gas para copar la oferta energética, combustibles que generan gases como el dióxido de carbono, que suben la temperatura.
- Mejor cocinar con gas que con energía eléctrica.
- APAGA el TV, radio, luces, computador (pantalla)... si no los estas usando. En tu lugar de trabajo apaga las luces de zonas comunes poco utilizadas.
-Utiliza bombillos de bajo consumo de energía.
- Modera el consumo de latas de aluminio.
- No uses o compres productos de PVC para nada, contamina muchísimo muchísimo y no es reciclable. 
5. TRANSPORTE: Modera el uso del vehículo particular, haz un uso eficiente del automóvil
- No viajes solo, organiza traslados en grupo o en transporte público. Infla bien las llantas de tu carro para que ahorre gasolina y el motor no la queme en exceso.
- Empieza a utilizar la bicicleta en la medida de lo posible.
- Los vehículos más grandes consumen más combustible que los pequeños. Si no requieres uno grande opta por una pequeño y de menor consumo de energía.
- Revisa la emisión de gases de tu vehículo.
- No aceleres cuando el vehículo no este en movimiento.
- Reduce el consumo de Aire Acondicionado pues este reduce la potencia y eleva el consumo de la gasolina.
- Modera tu Velocidad: En carretera nunca sobrepases los 110 kilómetros por hora ya que mas arriba produce un exagerado consumo de combustible.
- Nunca cargues innecesariamente tú vehículo con mucho peso: A mayor carga mayor consumo de combustible.
5. PAPEL -  Usa habitualmente papel reciclado.
- Fomenta el uso de productos hechos a partir de papel usado.
- Reduce el consumo de papel..
- Usa las hojas por las dos caras.
- Haz sólo las fotocopias imprescindibles.
- Reutiliza los sobres, cajas, etc.
- Rechaza productos de un sólo uso.

6.
 EDUCACIÓN:
Educa a los más jóvenes, a tus empleados, a tus vecinos y a todo los que conozcas en el respeto a la naturaleza y las consecuencias de no respetarla.

miércoles, 5 de enero de 2011

SALUDO DE BIENVENIDA

QUERIDOS ESTUDIANTES, DOCENTES, PERSONAL ADMINISTRATIVO, PADRES DE FAMILIA  Y COMUNIDAD EN GENERAL  DE LA INSTITUCION EDUCATIVA GABRIELA MISTRAL DEL MUNICIPIO DE LA TEBAIDA. RECIBAN UN CORDIAL SALUDO DE BIENVENIDA Y DESEANDOLES EXITOS EN ESTE AÑO 2011 Y QUE EL SEÑOR LOS COLME DE BENDICIONES Y QUE TENGAMOS UN AÑO MUY   PROPERO Y TRIUNFOS .

CORDIALMENTE

JULIAN BOTERO VALLECILLA
DOCENTE CIENCIAS NATURALES
INSTITUCION EDUCATIVA GABRIELA MISTRAL